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Abstract.

By use of the multinle-time-scale method, the low density expansion

is carried to the order of the triple collision integral. The validity

of Booliubov's assumntion that the multiple distribution depends function-

ally on a single particle distribution is carefully examined. It is found

that such an assumption is valid except locally for those particles

which have a large separation at a time t and which have their relative

velocity so oriented that they were in collision at t = 0. Since this

local breakdown is very selective, the triple collision integral which

is found in the literature is still correct. As a by-rroduct of the

multinle-time-scale method, the rate at which a system approaches the

kinetic state is obtained; it is also found that up to the order we have

considered the Maxwellian distribution is the only solution at thermal

equilibrium.
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I. Introduction.

During the past decade, various methods have been developed for the

derivation of the Boltzmann collision integral from first principles of

mechanics (Bogoliubov,1 Prigogine and his co-workers,2 Green,3 and

Kirkwood and his co-workers i). Recently the correction to the Boltzmann

(binary) collision integral has also been obtained by various investi-

gators (Choh and Uhlenbeck,
5 M. Green, Rice, Kirkwood and Harris,

7

and Resibois8 ). The relationship of various methods was first discussed

by Cohen9 '1 0 who established within certain assumptions the equivalence

- 11of the method of Bogoliubov and Green. More recently Sandri and

McCune, Sandri and Frieman 1 2 studied the problem of the low density ex-

pansion of the B-B-G-K-Y hierarchy by the method of multiple-time-scales.

They found that the triple collision integral obtained by the previous

investigators is divergent. The physical nature of this divergence was

not studied in any detail. On the other hand, the nature of the higher

order corrections to the Fokker-Planck collision integral was carried

out in great detail by Su.13 The nature of local singularities in the

solution for correlation function was displaced there. Well-behaved

correction terms to the Fokker-Planck collision integral were obtained.

In this paper, we shall use the method of multiple-time-scales to

investigate the nature of Boltzmann collision integral and its correction

terms under the assumption of spatial homogeneity. This systematic ex-

nansion procedure offers a simple way to demonstrate to what extent the

Bogoliubov assumption reparding the higher distribution functions AS

functionals of the first distribution is valid. It is found, up to the

triple collision level, in contrast to the works in Refs. 11 and 12, that
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Bogoliubov's assumption is valid except for a special local region in

two-particle phase space, i.e., for two Darticles having a large senaration

at time t and with their relative velocity oriented in such a way (say

in reference to their relative position vector) that they were in collision

at t = 0. This same local breakdown was first found in the investigation

of a weak coupling gas13 which leads to Fokker-Planck equation in its

lowest order approximation.

Cohen, in his investigation of the triple collision, also found

it necessary to neglect the kind of singularity mentioned above in order

that the equation for the first order two-particle function would admit

any solution at all. He remarked that, for the "large majority" of

cases, the equation for the two-particle function due to the triple

interaction was solvable and has a well-behaved solution, lie seemed

also to encounter the same difficulty in Ref. 10 where he suggested a

coarse-graining procedure.

We shall indeed see that the secularity we have found can be elimi-

nated by an averaging process in the momentum space, provided we restrict

ourselves to the triple collision level. As one goes to higher orders

such an averaging is no longer sufficient to smooth out the local singu-

larity.

It is suggested by the nature of the singularity, that a new scaling

be applied to the hierarchy equation in this special region in phase

space. The unit of time and length in this region is taken to be the

mean free time and mean free path resectively in contrast to the duration

of collision and range of interaction outside the special refion. There

is no longer a separation of time scales in this region. The hierarchy
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equations have to be solved Jointly on one time scale (kinetic time

scale). However, we note that the one-particle function is affected

by the two-particle function only "grossly," i.e., through the following

integral operator:

Here x is the relative position between particles 1 and 2, and 0 is the

interparticle potential. rhe subscript 1 (or 2) refers to the particle

1 or 2. The velocity integration. sahoe provides the coarse-graining

process which we mentioned earlier; this is, however, not sufficient at

higher orders because the singularity in the two-particle function then

becomes too strong. Since in the special region, the separation of the

two particles has to be large, if the range of the pair potential is very

limited, the contribution of any singularity at large x will be strongly

de-emphasized by the potential force d¢/dx under the integral sign. We

therefore conclude that even though Bogoliubov's assumption becomes

locally invalid in a local region, the triple collision integral obtained

in the literature is correct. The procedure of solving the hierarchy

equations, such as that given by Choh and Uhlenbeck,
5 can apparently be

pushed to higher order, provided the pair potential between the particles

is sufficiently short-ranged.

We shall formulate our problem as an initial value problem. Since

the relevent correlations between particles are those created through

the interaction of particles, the initial values for all correlation

functions will be taken to be zero. The effects of the initial values of

correlation functions on the one-particle kinetic equation were studied



in Ref. 13. Within the framiework of the nultinle-time-scale formulation,

all the rhsical chanr-es in the problem anienr in their own P'nronriate

time scales automatically: relaxation towards the kinetic stage on the

fast tire scale (of the order of the collision time), kinetic evolution

on the slow tine scale (ef the order of the mean free tire). For the

s-natial.!v homopeneoui system which we shall snnlyzc, the time scales

end automatically at the kinetic time scale, which, of course, is what

one would exnect nhvsically.

TT. Binar;i Collision Integral.

The first three members of the B-B-fl-K-Y hierarchy for a spatially

homogeneous sYstem under the low density anproximation are as follows:

af En dx dv 3
7t ;'T -;-2 dx ?1v

-.- [f( 2)F,(x-&,13) + h(x,L-1,123)I}
?-2

3h h h 1 __

- _. * _ a -)[h-f(1L7(23)+f(2)v7(13)]
t -12 x -21 3 a 4 m ax a2L1  a4

-~ ~~ -- C -- h+f(l)j'(23)4+f(3)F(l2)]

=integral term with the leadinF term of oraer E.
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Here f is the one-particle distribution function; g and h are the two-

and three-rarticle correlation functions which are related to the two-

and three-particle distribution functions as follows:

f(l) = ()

'(12) = u2(2) - f( )f(2)

h(123) F3 (123) - f(l)g(12) - f(2)p(13) - f(3)g(l?)

The time variable in the above functions is omitted for simplicity. The

numbers within each bracket indicate the snecific particles in which we

are interested.

L and I are the position vectors of narticle 1 relative to r'rticles

2 and 3 respectively. The small parameter E equals the average number of

particles within the range of the pair potential which is assumed to be

repulsive and finite in range.

The time and length in Eqs. (1) to (3) have been normalized by the

duration of a collision and the range of the pair potential respectively.

The mean free path of close collisions, in which we are interested, can

be given as follows:

1

nr
2

0

where n is the average density and r is the radius of the collision cross-

section. Identifying the latter as the range of the pair potential, we

see that the ratio of the range of Dotential to the mean free nath (or

the ratio of the collision time to the mean free time) is E. ror ver,

small t, we have therefore two distinct time scales in our problem: a
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fast time which is of the order of the collision time and a slow time

which is of the order of the mean free time. In the method of multiDle- '

time-scale, the slow time, as well as the fast time, is treated as in-

dependent variables, i.e., we extend f(t) to f(t, Ct, E
2t, ... ). The

extra freedom introduced is used to demand that the solution for f be

well-behaved in the limit of t - =, i.e., no secular behavior for

g(t - '). Formally this extension in the time variable is equivalent to

the expansion of the time derivative in the following way:

=- + E-.L +E2. 2 .+ (4)
at t t2

where

dt dt

dt i d1= C and so on.

We now expand f, g, and h in simple Dower series in c, for example,

f = f(o) + Ef(1) + (2f(2) + .... (5)

From the zero order equations of f, it is seen that f(o) is t in-

dependent. The equation for g(°)(x,12,t0 ) is

o) (o .).a _(o) 1 f_ a. (o)C (o)

at -1l ax m x v av = x Dv1  3v0 ...-.. ~ - --

(6) 43

.ts solution is easily found (since f is t indenendent) as

(0) (0)

r Ix,i2,t o ) = [_(12) - it fio) (if(°)(2) (7)

The inclusion of L't and so forth is rureli a mathematical rrocedure.

A dlscusslon of the termination of tlre scaleq is riven at the end of

t!;p next section.



where S-t (12) = exp [-t0 H(12)I is the two-particle streaming operator and

uI(i2) - v i . ( . _ 3_)

-12 * x m ax all 3X2

The one particle function up to this order of approximation is

af(l) af(o) = d ag() (x,12,t°Otl)
= m d d 2 dx " v

0  _ -

If we integrate this equation in to. the second term on the left side

of Eq. (8) will be proportional to t . To avoid the secularity due to0

af(0at I in the solution for f W on the time scale to we require

af() n dEd _ a a [S.(12) f(o)(i)f(o)

a I 2dx D - (air (2)] (9)

and

3d) n _. rY ( - (12)f(o) )f(o)(
t -d Z - ) ( (al (2 (10)

The integral term in (9) can be transformed into the usual Boltzmann

collision integral (binary). It is seen from Eq. (9) that the kinetic

evolution is in a time scale of order l/c compared with the duration of

a collision. It was shown that the former is Just the mean time between

collisions.

Equation (10) gives the transient towards the kinetic stare governed

by Lq. (A. The (tO) time behavior of the source function on the rirht

side cf iq. (10) can be analyzed as follows. The pair potential hR, been

assumed to have a finite range. At time to, because of the factor

dt/dx in Eq. (10), the particle 2 must be within the ranpe of rnrticle



1 in order that the integral be different from zero. F'or sufficiently large

t (12) will definitelv bring Particle 2 outside the range of p~article
* 0

1. If the p~air tDotential has an exnonential-like tail, the source

function of Ern. (10) will decay exnonentiallv in t as t tends to in-
0 0

finitv. Therefore, in that case, the arrrnch to the kinetic stage is

exronentially fast. in the tirme scR'ie of the collision time.

III. Triple Collision Integral..

The zero order three-narticle correlation function can be obtained

from (3) as

h Co) (x,&,123,t 0 ={[St (123) 1
0

- St(12)-1]
0

- [S- (23)-i]
-t
0

- [s-t (31) ill] f~o (l)f (2)f~ (3)
0

where S _ (123) is the three-particle streaming operator, exp [-t 0 (123)],
0

and H(123) is the three-particle Hamilton operator:

11(123) 4 , l3 -ra va 'n ' v -

-1 -3 -ax-

m1 31 2  m & 311 a1

The Pair potential had been assumed to be repulsive.



The inteprand of this integral in the limit of t 4 is plotted
0

in F'ig. 1. The integral on-the second line of (13) is given by the

shaded area in the fpranh. If x is finite, the -collision of particles

1 and 112 (if they happen to collide)*will occur at a finite T for any

non van is h ing r2 The above mentioned arep i7 therefore finite and

hence is the integral. 1However if w'e let

[~~t+ , lu

the integral bocomes sinr-1v infinite, where a, Y aire costants with

a I and Y related to the range of the rair potential. Ea. (14) in-

dicates a very careful selection of the points in the ohase space of the

two interactin- particles. WIe want the particles 'to have a larg-e

separation at time t and to have their relative velocity oriented in
0

such a way (in reference to the direction of their relative nosition

vector, say), that they were in collision at t 0. sIuch seculnrity was
0A

13also found in the w~eak courling expansion. .2atheriaticnllv it is

clear that the secularit- iS due to the infinite rangre or j7(0 (12) in

the snecial region-of phase space mentioned above. We observe that the

souinfor go (129t given by En. (7) cannot be valid in this special

region, since the assumntion of the independence of particles 1 and 2

from the rest of the system in the lowest order apnroximation becomes in-

valid if' the particles have an infinite range of correlation. The presence

of a third particle cannot be ignored.

If there is no collision between the time 0 andt, sr ()rf(0)

inS f coincide froma - 0 and on to infinite, the integral
iszr;identically.
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Next we consider the contribution of the integral terms to the

solution for g, (x,,12,t ). Since the structure of the second square A

bracket of the integral term in Eq. (12t) is very much the same as the

first one, we shall analyze the first one only, i.e.,

n v ~ [ (o) (0) (f(0)f:) (5
m -3 de D _t (x,&,123,t) S_(&,13) ]fo(f( f°(3) (15)

It is seen that because of its being x and t independent, the
0

second term in the above expression will cause a secularity in the solution

for g(1). To be free of secularity one usually, though not always cor-

rectly, seeks a cancellation between the first and second terms for all

x and &. This led Sandri to conclude that the cancellation is not

exact for some kinds of interaction between the three particles and thus

he was faced with a general secularity (non-local) in the expansion.

However, considering the expression in Eq. (15) as a source function of

the differential equation for V 12,t we see that the solution

for g (x -) denends very much on the behavior of thi3 source,
0

function in terms of x. It is evident that if this source function has

a finite range in x, and goes to zero sufficiently fast as Ixl -, the

solution for g !)(x,12,t ) -will be well-behaved in the limit of t -. .

To investigate the variation of the source function in terms of

x, we consider that at time t the confifuration of narticles 1, 2,
0

and 3 is as shown in Fig. 2. We assume that the three particles inter-

act simultaneously at the time t Apart from the integral operator
0

Sandri used the hierarchyequations for S-particle functions; the _4

corresponding quantity which caused the secularity is then /at,*
b2
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the first term of the source function in (15) is

S (x,&,l23)f(o)(1)f() ) (3) f ()( )f ()(2')f(o)(3 ') (16)

where 1', ", and 3' are the velocities of the three particles Pt the

noints -t backwards along the particle trajectories from the initial
0

configuration 123. For the second term in the source function the narticle

;1 does not interact with either i or 3. The tra.ectories of 1 and 3 are'

then given by the dashed lines in Fig. 2 because of the absence of 2.

Thus

f() (2) f(,13) f(o)(2) f(o)(l") (()(3 (17)

The points 1" and 3" should be projected infinitely far back from 1 and 3.

After particles I and 3 leave the interaction zone, there is no change in

their velocity; it is immaterial exactly where 1" and 3" are, nrovided

they are out of the interaction zone. For such an event, (16) and (17)

0

•are not the same in the limit of to  hwvrter ifrnei

finite. As lxi increases, the effect of the particle 2 on the motion

of particles 1 and 3 becomes less. For a sufficiently large ILI we see

that

3? 3??

and the expressions in (16) and (17) exactly cancel each other except

in the following two instances:.

H,
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1) Two- successive binary collisions 1 * 3 and 3 * 2.* For any

finite ,x there is no difference from the tDrevious simultaneous inter-.

action 1 * 2 * 3. The source function does not vanish. It can be.seen

that the expressions (16) and (17) do not cancel each other even in the

limit of lxi * (see Fig. 3). However in such a limit we see that

Ij,- xj also tends to be very large. This follows because WE_ has to

be finite because of the factor do/d& in the source function. It can be

seen that in the limit of k - xl - = in order that the second binary

collision 3*2 occur at all, the relative velocity between 2 and 3 must be

selected very carefully. 'Ihe relative velocity between 3 and 2 after

1 * 3 (particles 3 at 3') must be oriented almost in the direction of
0

- x. In other words, particle 3 at 3' must aim at particle 2 which
0

is at a large distance away. The solid angle in the relative velocity

space 423, within which the second binary collision is possible, goes
0

as/j- x12 as - x +. We thus conclude that although tne ex-

pressions in (16) and (17) do not cancel in the limit as i I =, the

source function itself, which contains a velocity integration dv3 , goes

to zero in the limit as lxi -

2) Two successive binary collisions 1 * 3 and 1 * 2. The situation

is much the same as before. In order to have such successive binary

collisions in the limit as lxi + = we require a special orientation

of the relative velocity v12  Since now there is no integration over

either v or v the source function for this special, arangement-' (or

equ iaently the special local region in the phase space) becomes in-

The syMbol * between two numbers indicates the interaction between

the tvO particles designated by the corresponding number.

t evelocity v, and v are related in a definite gay. The integration

In v OaMnts to an°interration in v.
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finite in range. The contribution to the solution for g (1) 2,t

becomes secular. This local secularity is: very similar to that caused

by the term ag() /act. However these two singular terms do not in

general cancel each other exactly. In order to ensure the secularity

of Eq. (13), the orientation of v12 is determined indenendently of the

presence of narticle 3, while in Eq. (15) there is a strong dependence

on Darticle 3 (comnare FIg. lb and Fig. 3). We therefore conclude that

the solution for g ()(x,12,t) is locally secular at

12x =t!'(vl2 + s) t + ]" (18)

This expression includes Eq. (114) as a special case.

ie have indicated earlier that in this special local region,

F(0)(x,12) is non-secular but has an infinite range in x. Now

(1) (x,12) becomes proportional to to as to becomes large. In order

to preserve the asymototic character of our series representation of

g in the limit as t o -, we must reouire

1

t<< i(19)
£

and consequently from Eq. (18) and (19)

_ <<- (20)

Since our time and length are normalized by the collision time and

range of the pair potential respectively, the inequalities (19) and (20)-

indicate that the formal expansion so far carried out is at most valid

only for a time duration of the order of the mean free time and a length

scale of the order of the mean free path. The solution for g(o) cannot

be valid in this stecial region, since the. binary :interaction alone

""- " : " " A



cannot be the leading approximation. In other words, when we solve for

g(x,l2) (the correlation function of 1 and 2), the presence of a third

particle can no longer be ignored.

We now introduce the following scaling for the two-particle cor-

relation function equation:

t to

£ (21)

X 1 X
C

where t' and xl will be of order unity for a time of the order of the

mean free time and a particle separation of the order of the mean free

path. Using Eq. (21) in E~q. (2), we obtain

+t 1 x ' ~ -*- [g(12) + f(l)f(2)] (22)
- al-l a-2

n rL tiv do - [f(l)g(&-x423) + h(x',C,123)Im J -3 d( E

--[f(2) g(xf-wj,13) + h(x',x'-C,123)I}

This equation cannot be solved independently of f as before, since both

f and g are now t' dependent. We see that the governing system in this

local region is non-?4arkoffian and Bogoliubov's functional assumption

is not va~l d.~ In other Vords, the evolution of the system in this local

region cannot, be described by a self-contained one-particle equation;

the correlation functions vary in the slow time scale on their own right

(not as functional of the one-,particle function).

hoeerthe -contribution of-such a local nonx~arkoffianslto

to tbt oqe- particle function it only a .higher order effect becatuse. of
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the eloityintgraiondv-2 adthe potential factor dO/dx in the

one-particle equation,. i.e.,

dxdv d * (23)
at -2 d x

a l

F'or a pair potential having a range much smaller than the mean free

path, the contribution of g to f from the above mentioned local region

is negligibly small. We therefore conclude that as far as the one-

particle function is concerned, one can ignore completely the local

non-'!arkoffian region indicated earlier. In other words, for the

correction term of the Boltzmann collision integral, one simple solves

Eq. (12) for g (t- )and substitutes it into En. (23).

The solution for p 1 (x,12,t ) is obtained from Eq. (12) as follows:
0 -

gi)x1, 0) fl (l't) 0 0(2) + ~)(2,t 0  f ()(1) (4

(?t 1
0

+ (1) (0)

4. d S(2 dL dv -S_ (xv,(,l23)

00

+~~,(12), 3 (S,3) f~Il U(x)o (&.113)

(0) (0)

where r (t =0) is the initial value or 1' (t V
0

For the-investir-tiol rf the: one-rarticle, equ~ation,. tbe second and

A_ _ 4&PI



third terms on the left side of Ee. (24) -can -be ignored because:of the

x integration in Eq. (23). Given a finite x, for sufficiently large to

the variation in T of the first two terms inside the curly brackets of

Eq. (24) is as shown in Fig. 4. The little bump near T = t renresents
0

the interaction of the particles at the time t . Note that the successive

binary collisions discussed earlier have been neglected. In other words,

the local region as indicated in Eq. (18) is excluded in the present

discussion.

The operator S (12) makes the contribution of a function which
-T

has a finite range in lxi, completely negligible in the limit of large

Therefore as far as the integral over T in Eq. (24) is concerned, we can

neglect the bump in Fig. 4 and the corresponding expression for Eq. (24) is

F2  (x,12,to-* .,t) = gl(12)+f C1)fo(2)+f (2)f (1)

=S_..(12) [f(1lto f((2,t) + f()(,tl)f (1,tl ] i 2

+ dT S (12) dj d do l S.(x,4,123) (25)

0

-S (1 2 )a S_,(&,13) a (x,x_-.,123)

r(0)(0)•

- S_(12) S (&,23)1 f( )f() (2)f() (3)

This expression for F is enuivalent to the one obtained by Choh L

2

and Uhlenbeck except for the first term on the right side, which vanishes

ME", A
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for f.(l(t =0) =0. It wa~s first pointed out by Sandrill that th e rol e

Of the functional dependence in the Bogoliubov method was played by

(0)the term ag /at 1in the multiple-time-scale formulation, Still ignoring
1A

the successive binary collisions discussed earlier, the solution of Eq.

(25) can be written in the following more-familiar form:l

()f~ () + (1) (o)
F 2(x,12,t' 0 " S_(12) [f (1) 2 (2)f (1)1

+ di dv [S_ (x,E,123) -S (-,12) S (26)

S -(x,12) S__(&-x,23) + S_ (x,12)] f () (o)f ()

The corresponding one-particle eauati on, ignoring the transient J

of order of the collision time, is as follows:

afi f(o) n
+t aT -~ -dx a d,&dv 3 S__(x,l2)jirf +f fYoa1- _2 4,12J _

z -2 dx am, v_3 [S (,1,123) (2T)

-S,(x,12) Sjl3 - S,(x,12) S_(L.,x,23)

+ S.(x, (O (1)f~o (2)f~ )(3)

(o)
The variation of f on the t2 time scale can only be determined

by the condition of non-secularity, of f~l in the long time limit of t.

In the limit of t, - p by the well known H-theorm of the Boltzmnann

(0)(binary) olso nerl f gos to the MaxVellian distribution.
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It is not-difficult to show that the right hand -side of Eq. (27) vanishes

for f equal to the Maxwellian distribution.. Therefore we have-, by

the condition of non-secularity, that

a) (28)

and

3f.... n _E _~ S 2.. (12) f Ai)f(o)(2+ ()f (a)W
at, dx D1(1r ()+ 2) '

+ dx dv * . liJd dv [S (xj,123) -S (12)S
m "1-2 -1i am 113

-S(12) S_(-x,23) + S__(,c 12)Ifc2 (0)(Co () (2)f (0) (3) (29)

The second term on the right side of Eq. (29) is the triple collision

5 6integral which has been obtained by Choh and tUhlenbeck, Green, Rice,

Kirkwood, and Hiarris,7 and Resibois. Euto (28) indicates a self.-

termination of the multiple-time-scale formulation, i.e., there is no

variation after the time scale of kinetic evolution, which is what one

would expect physically for a homogeneous system.

It is well known that on the binary collisio lee ystmwhan

disturbance will go, to the thermal equilibrium as indicated by- the H-

theorem of -Boltzmann.: It is of interest- to se -whether Eq . (29) - to, 7

gether'vith Eq. F9, ill force a system into, thermal equilibrium, iLe.,

the -one-i.varticle function becomes the Haxwell-wBoltzmaftn distr~ibution uo~

to the o reof c * Since, the expansion of-the hierazhy in terms of C

is vive4 s an sympoticseriesi it i nycnitn oase h



above iuest-ion order by order. First, becauSe- ,f' t-ia *-thcorem of the

(0)binar-y collision intepral we know f' bez-onrs 'axweILian in thermal

ertuilLbrium. With f f the trirle collision inteirral vanishes

and we are left with

Sdxdv ~ S(? f ( 1)if~ (?)+f~i ~f ()I(]

Combining this with the lowest order arnroxirnation (Boltzmann's equation),

we obtain

(f + - J dXdV. do [f (l)+E f (1)][f (?)+U' (21+(

~3v the H-theorem for this coilisicr ;ntevrni, we know thiat f + cf

(roes to the Maxwellian distribution in thermal enuilihriui. If we choose

f (t=0) =0 initially, f poes to zero in thermnl equilibrium because

Eqs. (P9) and (30) nreserve the normalization of' uch F! statement

apparently holds also for the hirlier o-rder approximations.

A-



A

IV. IKiscussion.

Using the multinle-time-scale method, it is found that the triple

collision integral for a classical Boltzmann Pas is identical to that

obtained by Choh and Uhlenbeck. The functional dependence of the

multiple particle functions on the one narticle function is nevertheless

found to be locally invalid for particles having large separations at

time t and with their relative velocity oriented in such a way that they
0-

were in collision at t = 0. Such locally non-functional behavior ofo

the multiple particle functions is related to the inseparability of the

time and length scales caused by the two successive binary collisions

which happen at a time interval of the order of the mean free time. A new

scaling for such a local region is given. The self-contained (or Markoffian)

one-particle description of the system which is true outside such a region

is found to be impossible. The hierarchy equations have to be solved

simultaneously on the kinetic time scale (of the order of the mean free

time). However, due to the very special nature of the relative velocity

in this local breakdown, the contribution of this local region to the

one-particle function comes into play only at orders higher than the

triple collision level. Furthermore, if the pair potential is limited

in its range, such a local contribution can be neglected even in higher

orders:.

A

A A

fV-
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